
Lecture 5: Programming
using MATLAB

Dr. Mohammed Hawa
Electrical Engineering Department

University of Jordan

EE201: Computer Applications. See Textbook Chapter 4.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Algorithms and Control Structures

• Algorithm: a sequence of instructions that
performs some task in a finite amount of time.

• The algorithm uses a control structure to execute
instructions in a certain order.

• Control structure categories:
– Sequential operations: Instructions executed in order.

– Conditional operations: First ask a question to be
answered with a true/false answer and then select the
next instruction based on the answer.

– Iterative operations (loops): Repeat the execution of a
block of instructions.

2

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Before Programming

• Before writing a program, we need a plan.

• A plan helps us focus on the problem, not
the code.

• Common methods to show a plan are:

– Flowchart: A graphical description of the
program flow.

– Pseudocode: A verbal description of the
program details.

3

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Flowcharts

• Flowcharts are geometric symbols to describe
the program steps.

• They capture the “flow” of the program.

• Flowcharts are useful for developing and
documenting programs that contain
conditional statements, because they can
display the various paths (called “branches”)
that a program can take, depending on how
the conditional statements are executed.

4

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Examples

5

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Flowchart
Symbols

6

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Pseudocode

• In pseudocode, natural language and
mathematical expressions are used to
construct statements that look like
computer statements but without detailed
syntax.

• Each pseudocode instruction may be
numbered, but should be unambiguous
and computable.

• Similar to a recipe.

7

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Pseudocode Example

8

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 9

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 10

During and After Programming

• Make sure to provide effective
documentation along with the program.
This can be accomplished using:
– Proper selection of variable names to reflect

the quantities they represent.

– Using comments within the program.

• Debugging a program is the process of
finding and removing the “bugs” or errors
in a program.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Bugs

Bugs usually fall into one of two categories:
1. Syntax errors: such as omitting a parenthesis or

comma, or spelling a command name
incorrectly. MATLAB usually detects the more
obvious errors and displays a message
describing the error and its location.

2. Errors due to an incorrect mathematical
procedure. These are called runtime errors.
They do not necessarily occur every time the
program is executed; their occurrence often
depends on the particular input data. A
common example is division by zero.

11

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Finding Bugs: Debugging

To locate runtime errors, try the following:

1. Always test your program with a simple
version of the problem, whose answers
can be checked by hand calculations.

2. Display any intermediate calculations by
removing semicolons at the end of
statements.

12

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Operator Meaning

< Less than.

<= Less than or equal to.

> Greater than.

>= Greater than or equal to.

== Equal to.

~= Not equal to.

Relational Operators

13

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Examples

>> x = [6 3 9];

>> y = [14 2 9];

>> z = (x < y)

z =

 1 0 0

>> z = x ~= y

z =

 1 1 0

>> z = x > 8

z =

 0 0 1

>> a = 3;

>> b = 4;

>> a == b

ans =

 0

>> a ~= b

ans =

 1

>> a < b

ans =

 1

>> b >= -4

ans =

 1

 14

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Relational operators can be used for array addressing.

For example

>> x = [6,3,9];

>> y = [14,2,9];

>> x<y

ans =

1 0 0

>> z = x(x<y)

z =

6

finds all the elements in x that are less than the
corresponding elements in y. The result is z = 6.

15

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

The arithmetic operators +, -, *, /, and \ have precedence

over the relational operators. Thus the statement

z = 5 > 2 + 7

is equivalent to

z = 5 > (2+7)

and returns the result z = 0.

We can use parentheses to change the order of
precedence; for example, z = (5 > 2) + 7 evaluates

to z = 8.

16

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

The logical Class

When the relational operators are used, such as

x = (5 > 2)

they create a logical variable, in this case, x.

Logical variables may have only the values 1 (true)

and 0 (false).

17

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Just because an array contains only 0s and 1s, however, it

is not necessarily a logical array. For example, in the
following session k and w appear the same, but k is a

logical array and w is a numeric array, and thus an error

message is issued.

>>x = -2:2;

>>k = (abs(x)>1)

k =

1 0 0 0 1

>>z = x(k)

z =

-2 2

>>w = [1,0,0,0,1]; v = x(w)

??? Subscript indices must either be real

positive... integers or logicals.

18

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Accessing Arrays Using Logical Arrays

When a logical array is used to address another array,

it extracts from that array the elements in the

locations where the logical array has 1s.

So typing A(B), where B is a logical array of the

same size as A, returns the values of A at the indices

where B is 1.

Given A =[5,6,7;8,9,10;11,12,13] and B =

logical(eye(3)), we can extract the diagonal

elements of A by typing C = A(B) to obtain C =

[5;9;13].

See our earlier discussion of logical indexing.

19

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Operator Name Definition

~ NOT ~A returns an array the same dimension as A; the new

array has ones where A is zero and zeros where A is

nonzero.

& AND A & B returns an array the same dimension as A and B;

the new array has ones where both A and B have

nonzero elements and zeros where either A or B is zero.

| OR A | B returns an array the same dimension as A and B;

the new array has ones where at least one element in A

or B is nonzero and zeros where A and B are both zero.

&& Short-Circuit AND Short-circuiting means the second operand (right

hand side) is evaluated only when the result is not fully

determined by the first operand (left hand side)
A & B (A and B are evaluated)

A && B (B is only evaluated if A is true)

|| Short-Circuit OR | can operate on arrays but || only operates on scalars

Logical Operators

20

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Examples
>> a = 3;

>> b = 4;

>> c = 5;

>> x = ~(a == b)

x =

 1

>> (a < b) & (b < c)

ans =

 1

>> (a < b) && (b < c)

ans =

 1

>> 5 && 0

ans =

 0

>> [1 2] && [3 4]

??? Operands to the || and && operators must

be convertible to logical scalar values.

 21

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Precedence Operator type

First Parentheses; evaluated starting with the

innermost pair.

Second Arithmetic operators and logical NOT (~);

evaluated from left to right.

Third Relational operators; evaluated from left to

right.

Fourth Logical AND.

Fifth Logical OR.

Order of precedence for operators

22

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Logical function Definition

ischar(A) Returns a 1 if A is a character array

and 0 otherwise.
isempty(A) Returns a 1 if A is an empty matrix and

0 otherwise.
isinf(A) Returns an array of the same

dimension as A, with ones where

A has ‘inf’ and zeros elsewhere.

isnan(A) Returns an array of the same

dimension as A with ones where

A has ‘NaN’ and zeros elsewhere.

(‘NaN’ stands for “not a

number,” which means an undefined

result.)

Logical functions

23

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Logical Functions

isnumeric(A) Returns a 1 if A is a numeric
array and 0 otherwise.

isreal(A) Returns a 1 if A has no
elements with imaginary parts
and 0 otherwise.

logical(A) Converts the elements of the
array A into logical values.

xor(A,B) Returns an array the same
dimension as A and B; the new
array has ones where either A
or B is nonzero, but not both,
and zeros where A and B are
either both nonzero or both
zero.

24

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Logical Operators and the find Function

Consider the session

>> x = [5, -3, 0, 0, 8];

>> y = [2, 4, 0, 5, 7];

>> x&y

ans =

1 1 0 0 1

>> z = find(x&y)

z =

1 2 5

Note that the find function returns the indices, and

not the values.

25

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Conditional Statements: The if Statement

The if statement’s basic form is

if logical expression

statements
end

Every if statement must have an accompanying end

statement. The end statement marks the end of the

statements that are to be executed if the logical

expression is true.

26

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

The else Statement

The basic structure for the use of the else statement is

if logical expression

statement group 1
else

statement group 2
end

When the test, if logical expression, is performed, where

the logical expression may be an array,

the test returns a value of true only if all the elements of

the logical expression are true!

27

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

The elseif Statement

The general form of the if statement is

if logical expression 1

statement group 1

elseif logical expression 2

statement group 2

else

statement group 3

end

The else and elseif statements may be omitted if not

required. However, if both are used, the else statement

must come after the elseif statement to take care of all

conditions that might be unaccounted for.

28

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Exercise

File: test.m

a = 5;

b = 4;

if a == b

 disp(a);

 disp(b);

elseif a < b

 disp(a);

else

 disp(b);

end

Matlab command prompt

>> test

 4

>>

29

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Example

function y = test(x)

if x >= 9

y = 15*sqrt(4*x) + 10

elseif x >= 0 % already less than 9

y = 10*x + 10

else

y = 10

end

• Suppose that we want to
compute y, which is given by
the equation:

30

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Example: if we fail to recognize how the test works, the

following statements do not perform the way we might

expect.

x = [4 -9 25];

if x < 0

disp(’Cant find square root of negative.’)

else

y = sqrt(x)

end

When this program is run it gives the result

y =

2 0 + 3.000i 5

31

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Instead, consider what happens if we test for x positive.

x = [4, -9, 25];

if x >= 0

y = sqrt(x)

else

disp(’Cant find square root of negative.’)

end

When executed, it produces the following message:

Cant find square root of negative.

The test if x < 0 is false, and the test if x >= 0 also

returns a false value because x >= 0 returns the vector
[1,0,1].

32

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Loops

• Often in your programs you will want to
“loop”
– repeat some commands multiple times

• If you know how many times you want to
loop
– use a for loop

• If you want to loop until something happens
(a condition is satisfied)
– use a while loop

• If you find yourself typing similar lines more
than a couple of times, use a loop

33

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

for Loops

A simple example of a for loop is:

m = 0;

x(1) = 10;

for k = 2:3:11;

m = m + 1;

x(m+1) = x(m) + k^2;

end

k takes on the values 2, 5, 8, 11. The variable m

indicates the index of the array x. When the loop

is finished the array x will have the values

x(1)=14, x(2)=39, x(3)=103, x(4)=224.

34

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Note the following rules when using for loops with the loop
variable expression k = m:s:n:

· The step value s may be negative.

Example: k = 10:-2:4 produces k = 10, 8, 6, 4.

· If s is omitted, the step value defaults to 1.

· If s is positive, the loop will not be executed if m is greater

than n.

· If s is negative, the loop will not be executed if m is less

than n.

· If m equals n, the loop will be executed only once.

· If the step value s is not an integer, round-off errors can

cause the loop to execute a different number of

passes than intended.

35

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Exercise

File: loop.m

for i = 1:1:5

 disp(i)

end

Matlab command prompt

>> loop

 1

 2

 3

 4

 5

>>

36

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Strings and Conditional Statements

A string is a variable that contains characters. Strings are

useful for creating input prompts and messages and for

storing and operating on data such as names and

addresses.

To create a string variable, enclose the characters in single

quotes. For example, the string variable name is created as

follows:

>>name = ’Mohammed Ali’

name =

Mohammed Ali

37

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

The following string, number, is not the same as the

variable number created by typing number = 123.

>>number = ’123’

number =

123

38

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

The following prompt program is a script file that allows the
user to answer Yes by typing either Y or y or by pressing the

Enter key. Any other response is treated as a No answer.

response = input(’Continue? Y/N [Y]: ’,’s’);

if (isempty(response))|(response ==

’Y’)|(response == ’y’)

response = ’Y’

else

response = ’N’

end

39

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 40

Programming Exercise #1

• Write a MATLAB program that does the
following:

• The program asks you to enter your name.
• It waits for you to enter your name and hit

Enter.
• The program reads your name, counts its

characters and any blank spaces in the name,
then displays something like this:

• You name is “Mohammed Ali”. It has 11
characters and 1 blank space.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Using loops is slower than arrays in MATLAB

We can use the mask technique to compute the square root
of only those elements of A that are no less than 0 and add

50 to those elements that are negative. The program is

A = [0, -1, 4; 9, -14, 25; -34, 49, 64];

C = (A >= 0);

A(C) = sqrt(A(C))

A(~C) = A(~C) + 50

41

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

while Loops

The while loop is used when the looping process

terminates because a specified condition is satisfied, and

thus the number of passes is not known in advance.

A simple example of a while loop is

x = 5;

while x < 25

disp(x)

x = 2*x - 1;

end

The results displayed by the disp statement are 5, 9, 17.

42

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

The typical structure of a while loop follows.

while logical expression

statements

end

For the while loop to function properly, the following two

conditions must occur:

1. The loop variable must have a value before the while

statement is executed.

2. The loop variable must be changed somehow by the

statements.

43

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Exercise
File: loop2.m

i = 1;

while i^2 <= 50

 disp(i^2)

 i = i + 1;

end

Matlab command prompt

>> loop2

 1

 4

 9

 16

 25

 36

 49

>>

44

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Editor/Debugger containing
program to be analyzed

45

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

The break statement

• break terminates the execution of a loop, so if you
have a nested loop, break will only quit the
innermost loop, and the program will continue
running.

s=6; % initialize s to 6

while s~=1 % as long as s is not equal to 1 stay in loop

 if s==17 % if s equals 17

 sprintf('Found 17 in the loop!!')

 break;

 end

 if mod(s,2) % the actual "brains" of the iteration

 s=s/2;

 else

 s=3*s+1;

 end

end

46

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

The continue statement

The following code uses a continue statement to avoid

computing the logarithm of a negative number.

x = [10,1000,-10,100];

y = NaN*x;

for k = 1:length(x)

if x(k) < 0

continue

end

y(k) = log10(x(k));

end

y

The result is y = [1 3 NaN 2].

47

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Homework

• Write a script file to determine how many terms are required
for the sum of the series 5��	– 	2�, �	 � 	1, 2, 3, … to exceed
10,000. What is the sum for this many terms?

total = 0; k = 0;

while total < 1e4

k = k + 1;

total = total + 5*k^2 - 2*k;

end

disp(’The number of terms is:’)

disp(k)

disp(’The sum is:’)

disp(total)

• The sum is 10,203 after 18 terms.

48

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Exercise: Fourier Series

• � � � �
 � ∑ �� cos
�
� �
�
�
�
�

• Discover the following periodic function:

• � � � 0.5 �
�

�
cos � �

�

�
cos 3� �

�

�
cos 5� �

�

�
cos 7� � ⋯

• Use a for or while loop. Use n as the loop
parameter to add certain terms then plot the
result versus time �10 � � � 10.

• On one figure, draw the result of 3 terms.

• On one figure, draw the result of 10 terms.

• On one figure, draw the result of 100 terms.

49

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Infinite Loops

• “Infinite loop” = piece of code that will
execute again and again … without ever
ending.

• Possible reasons for infinite loops:

– getting the conditional statement wrong

– forgetting the update step

• If you are in an infinite loop then ctrl-c
stops MATLAB executing your program.

50

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

The switch statement

The switch statement provides an alternative to using the

if, elseif, and else commands.

Anything programmed using switch can also be

programmed using if statements.

However, for some applications the switch statement is

more readable than code using the if structure.

51

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Syntax of switch

switch input expression (can be a scalar or string).
case value1

statement group 1

case value2

statement group 2

.

.

.

otherwise

statement group n

end

52

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

The following switch block displays the point on the

compass that corresponds to that angle.

switch angle

case 45

disp(’Northeast’)

case 135

disp(’Southeast’)

case 225

disp(’Southwest’)

case 315

disp(’Northwest’)

otherwise

disp(’Direction Unknown’)

end

53

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Boolean Variables

• MATLAB allows boolean variables that
take true/false values

if (atUniversity & stillAStudent)

needMoreMoney = true;

end

54

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Programming Exercise #2

• Write a MATLAB program to solve this:

• One investment opportunity pays 5.5%
annual profit, while a second investment
opportunity pays 4.5% annual profit.

• Determine how much longer it will take to
accumulate at least $50,000 in the second
investment opportunity compared to the
first if you invest $1000 initially and $1000
at the end of each year.

55

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Programming Exercise #3

• Write a MATLAB program that asks you for
a hexadecimal integer number.

• The program should read that number and
convert it to decimal.

• Example: 84CD hexadecimal is 33997
decimal.

• Can you improve on your program so it
accepts binary or hexadecimal or decimal
and converts it to all other formats? You need
to accept numbers written in something like
this: 94CAh or 110110001b.

56

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Homework

• Solve as many problems from Chapter 4
as you can

• Suggested problems:

• 4.2, 4.4, 4.5, 4.11, 4.13, 4.15, 4.16, 4.17, 4.23,
4.24, 4.25, 4.26, 4.33, 4.37, 4.39, 4.47

57

